Measuring Metal–Metal Communication in a Series of Ketimide-Bridged [Fe2]6+ Complexes

Abstract

Reaction of Fe(acac)3 with 3 equiv of Li[N═C(R)Ph] (R = Ph, tBu) results in the formation of the [Fe2]6+ complexes, [Fe2(μ-N═C(R)Ph)2(N═C(R)Ph)4] (R = Ph, 1; tBu, 2), in low to moderate yields. Reaction of FeCl2 with 6 equiv of Li(N═C13H8) (HN═C13H8 = 9-fluorenone imine) results in the formation of [Li(THF)2]2[Fe(N═C13H8)4] (3) in good yield. Subsequent oxidation of 3 with ca. 0.8 equiv of I2 generates the [Fe2]6+ complex, [Fe2(μ-N═C13H8)2(N═C13H8)4] (4), along with free fluorenyl ketazine. Complexes 1, 2, and 4 were characterized by 1H NMR spectroscopy, X-ray crystallography, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. The Fe-Fe distances in 1, 2, and 4 range from 2.803(7) to 2.925(1) Å, indicating that no direct Fe-Fe interaction is present in these complexes. The 57Fe Mössbauer spectra for complexes 1, 2, and 4 are all consistent with the presence of symmetry-equivalent high-spin Fe3+ centers. Finally, all three complexes exhibit a similar degree of antiferromagnetic coupling between the metal centers (J = -26 to -30 cm-1), as ascertained by SQUID magnetometry

    Similar works