Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery

Abstract

Having the ability to make accurate assessments of above ground biomass (AGB) at high spatial resolution is invaluable for the management of dryland forest resources in areas at risk from deforestation, forest degradation pressure and climate change impacts. This study reports on the use of satellite-based synthetic-aperture radar (SAR) and multispectral imagery for estimating AGB by correlating satellite observations with ground truth data collected on forest plots from dryland forests in the Chobe National Park, Botswana. We undertook nineteen quantitative experiments with Sentinel-1 (S1), and Sentinel-2 (S2) and tested simple and multivariate regression including parametric (linear) and non-parametric (random forests) algorithms, to explore the optimal approaches for AGB estimation. The largest AGB value of 145 Mg/ha was found in northern Chobe while a large part of the study area (85%) is characterized by low AGB values (80 Mg/ha AGB, whereas the inclusion of SAR backscatter and optical red edge bands (B5) significantly reduces saturation effects in areas of high biomass. GNDVI and red edge (B5) derived vegetation indices have more potential for estimating AGB in dryland forests than NDVI. Our results demonstrate that dryland AGB can be estimated with a reasonable level of precision from open access Earth observation data using multivariate random forest regression

    Similar works

    Full text

    thumbnail-image

    Available Versions