Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals with extremely strong C-F bonds. Due to their thermal stability, acid resistance, and high surface activity, they have been widely used for several decades in various consumer products. PFAS has been detected in water, soil, sediment, air, food, and biota samples on all continents and due to this are recognized as environmental and human health risk (Carlson et al. 2022). In the last decade, several available technologies were tested for the remediation of PFAS-polluted environments, such as adsorption, filtration, thermal destruction, oxidation/reduction, and soil washing, but several disadvantages were reported (Bolan et al., 2021). We hypothesize that by using advanced oxidation techniques followed by microbial treatment decrease in the concentration of PFOA as a PFAS model compound will occur. In the beginning, we tested separately abiotic and biotic degradation of PFOA. Target LC-MS/MS was used for quantitative analysis of PFOA decrease, and for detecting degradation products, nontargeted LC-MS/MS analysis was used. In the photocatalysis study, we used selected Ti and Al-based photocatalysts. The experiments were conducted at 20 °C in an open cylindrical polypropylene reactor, and a simulated solar radiation lamp (Solimed BH Quarzlampen) was used as a light source. Microbial communities were isolated from the locations in Serbia, Japan, and Italy known for their pollution with PFAS, and enrichment was conducted on the media supplemented with ppm values of PFOA (Beskoski et al., 2018). Microbial communities were used as inoculum in the PFOA biodegradation study