Chiral metamaterial consists of periodically placed resonant elements exhibiting chiral effects such as circular dichroism and optical activity. They appear due to the coupling of electric and magnetic fields which is result of an interaction of electromagnetic wave and chiral metamaterial. Numerous designs of chiral resonant elements are proposed providing applications for polarization conversion, filtering and absorption in THz frequency range [1, 2]. Here, we analyze propagation of electromagnetic waves through chiral metamaterial composed of twisted closed ring resonators (TCRR). The proposed chiral metamaterial is ultrathin structure which makes this design easy to fabricate and, at the same time, maintains effects which can be observed in conventional chiral 3D metamaterial structures. Dimensions of chiral elements are chosen to provide resonances within THz frequency range. Different geometrical parameters are varied in order to determine their influence on resonant frequency and losses [3]. For our TCRR chiral metamaterial structure, the analysis is made from microscopic as well as from macroscopic point of view. Through numerical simulations, we calculate electromagnetic field distribution, scattering coefficients, absorption and consequently, circular dichroism. Additionally, we examine losses in our chiral structure in terms of radiative and non-radiative ones [4] and explore its influence on the circular dichroism.VI International School and Conference on Photonics and COST actions: MP1406 and MP1402 : PHOTONICA2017 : August 23 - September 1, 2017; Belgrade