Improvement of sorption properties of natural clay pyrophyllite by ultrasonic treatment

Abstract

Pyrophyllite, a naturally abundant clay material, exhibits remarkable physicochemical characteristics. Its minimal electrical and thermal conductivity, low expansion rate, strong mechanical properties, and outstanding heat resistance make it a valuable resource across diverse industries. Pyrophyllite finds applications in sectors such as paper and plastic manufacturing, brick production, ceramics, cosmetics, rubber processing, and wastewater treatment. Furthermore, its versatility extends to the production of ceramic membranes for efficient water filtration. This paper presents the characterization of natural pyrophyllite ore subjected to ultrasonic treatment at varying time intervals. The ultrasonic treatment aims to eliminate hard phases such as quartz and calcite within the ore, thereby improving its sorption capabilities. The treated samples were subjected to analysis using SEM and XRD techniques. Morphological and structural analysis revealed that as the duration of ultrasonic treatment increased, the proportion of hard phases in the sample decreased. Additionally, this study evaluated the sorption properties of pyrophyllite. A comparative analysis was conducted between a raw clay sample containing various admixtures and a sample that underwent a 30-minute ultrasonic treatment. The sorption of a methylene blue solution after 24 hours in water was assessed, with UV-Vis analysis revealing that the efficiency of the sonically treated pyrophyllite exceeded 97%, whereas the raw ore exhibited approximately 89% efficiency over the same duration. These findings suggest that the removal of hard phases from pyrophyllite ore enhances its sorption propertiesTwenty-First Young Researchers’ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 – December 1, 2023, Belgrade, Serbi

    Similar works