In tactical wargames, such as Warhammer 40K, two or more players control asymmetrical armies that include multiple units of different types and strengths. In these type of games, unit are assigned point costs, which are used to ensure that all players will control armies of similar strength. Players are provided with a total budget of points they can spend to purchase units that will be part of their army lists. Calculating the point value of individual units is a tedious manual process, which often requires long play-testing sessions and iterations of adjustments. In this paper, we propose an automated way of predicting these point costs using a linear regression approach. We use a multi-unit, turn-based, non-balanced game that has three asymmetric armies. We use Monte Carlo Tree Search agents to simulate the players, using different heuristics to emulate playing strategies. We present six different variants of our unit-point prediction algorithm, and we show how our best variant is able to almost reduce the unbalanced nature of the game by half