Psychiatric Illnesses as Disorders of Network Dynamics

Abstract

This review provides a dynamical systems perspective on psychiatric symptoms and disease, and discusses its potential implications for diagnosis, prognosis, and treatment. After a brief introduction into the theory of dynamical systems, we will focus on the idea that cognitive and emotional functions are implemented in terms of dynamical systems phenomena in the brain, a common assumption in theoretical and computational neuroscience. Specific computational models, anchored in biophysics, for generating different types of network dynamics, and with a relation to psychiatric symptoms, will be briefly reviewed, as well as methodological approaches for reconstructing the system dynamics from observed time series (like fMRI or EEG recordings). We then attempt to outline how psychiatric phenomena, associated with schizophrenia, depression, PTSD, ADHD, phantom pain, and others, could be understood in dynamical systems terms. Most importantly, we will try to convey that the dynamical systems level may provide a central, hub-like level of convergence which unifies and links multiple biophysical and behavioral phenomena, in the sense that diverse biophysical changes can give rise to the same dynamical phenomena and, vice versa, similar changes in dynamics may yield different behavioral symptoms depending on the brain area where these changes manifest. If this assessment is correct, it may have profound implications for the diagnosis, prognosis, and treatment of psychiatric conditions, as it puts the focus on dynamics. We therefore argue that consideration of dynamics should play an important role in the choice and target of interventions

    Similar works