Contactless system and method for assessing tissue viability and other hemodynamic parameters

Abstract

A contactless system for assessing tissue viability and other hemodynamic parameters includes one or more light sources configured to emit lights at a predetermined wavelength sensitive to hemoglobin concentration associated with spontaneous hemodynamic oscillations at tissue in a predetermined area of a human subject. One or more polarizers are each coupled to one or more of the one or more light sources and are configured to polarize the light to a polarized state such that the polarized light in the polarized state diffuses into the tissue in the predetermined area at a predetermined depth and the polarized light is maintained in the polarized state at the predetermined depth. One or more detectors each including a detector polarizer coupled thereto are configured to discriminate the light maintained in the polarized state and at the predetermined depth and are configured to generate a plurality of frames of the tissue in the predetermined area at the predetermined depth. A controller is coupled to the one or more light sources and the one or more detectors. The controller is configured to: acquire the plurality of frames, select a region of interest having the same coordinates for each of the plurality of frames, average the number of pixels within each region of interest to create a raw reference signal, detrend the raw reference signal to create a detrended raw reference signal, perform frequency domain analysis of the detrended raw reference signal, identify a frequency band of interest associated with the spontaneous hemodynamic oscillations, and perform an inverse fast Fourier transform within the frequency band of interest to generate a reference signal indicative of blood volume oscillations at a selected spontaneous hemodynamic oscillation. For each sample of the reference signal at a predetermined point in time, the controller multiplies the sample by each pixel of a frame at the same predetermined point in time to generate a three-dimensional coordinate matrix including a plurality of correlation matrix frames at each predetermined point in time. The controller adds the plurality of correlation matrix frames at each predetermined point in time to generate a two-dimensional hemodynamic map indicative of the strength of the spontaneous hemodynamic oscillation to assess the viability of the tissue in the predetermined area

    Similar works