Transmission of Analog Information Over the Multiple Access Relay Channel Using Zero-Delay Non-Linear Mappings

Abstract

[Abstract]: We consider the zero-delay encoding of discrete-time analog information over the Multiple Access Relay Channel (MARC) using non-linear mapping functions. On the one hand, zero-delay non-linear mappings are capable to deal with the multiple access interference (MAI) caused by the simultaneous transmission of the information. On the other, the relaying operation is a Decode-and-Forward (DF) strategy where the decoded messages are merged into a single message using a specific continuous mapping depending on the correlation level of the source information. At the receiver, an approximated Minimum Mean Squared Error (MMSE) decoder is developed to obtain an estimate of the transmitted source symbols which exploits the information received from the relay node in combination with the messages received from the transmitters through the direct links. The resulting system provides better performance than the other alternative encoding strategies for the MARC with similar complexity and delay and also approaches the performance of theoretical strategies which require a significantly higher delay and computational cost.This work was supported in part by the Office of the Naval Research Global of United States under Grant N62909-15-1-2014, in part by the Xunta de Galicia under Grant ED431C 2016-045, Grant ED341D R2016/012, and Grant ED431G/01, in part by the Agencia Estatal de Investigación of Spain under Grant TEC2015-69648-REDC and Grant TEC2016-75067-C4-1-R, and in part by the ERDF funds of the EU (AEI/FEDER, UE).Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/0

    Similar works