FoxSamuelBotanyPlantPathologyParallelAnalysisRNA_TableS1.pdf
- Publication date
- Publisher
Abstract
BACKGROUND: The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and
biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation,
has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions.
Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE)
data is lacking in B. distachyon.
RESULTS: B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different
tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved
miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other
plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and
sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched
sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of
the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted
miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide
specific target RNA cleavage in a correspondingly tissue-preferential manner.
CONCLUSIONS: B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge
gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in
B. distachyon and related plants