Cooling Strategies for Heated Cylinders Using Pulsating Airflow with Different Waveforms

Abstract

Pulsate flow is an effective technique applied for cooling several engineering systems depending on their pulsate frequency. One very sound external flow pulsation application is heat transfer over heated bodies. In present work, an experimental design and numerical model of controlled pulsating flow according to generated pulsating frequency and wave shape around a heated cylinder were performed. The effects of pulsating frequency, amplitude, and mean velocity on the fluid flow and heat transfer characteristics over a heated cylinder were studied. The wave frequency varied from 2 to 12 Hz, and the amplitude varied from 0.2 to 0.8 m/s. Moreover, different waveforms were investigated to determine their effect on wall cooling. For constant wave frequency and amplitude, the most efficient wave in cooling was the sawtooth wave, with the average wall temperature after 30 s was 1.6 °C cooler than that of the forced convection case, followed by the triangular wave at 1.2 °C less. The heat transfer rate and the flow field were drastically influenced by the variations of these parameters. Optimization was conducted for each wave type to find the optimum wave frequency and amplitude. The optimizing showed that, the most efficient wave was the sawtooth with 12°C temperature reduction compared with that of the forced convection case, followed by the triangular. Furthermore, regression analysis was conducted to estimate the relationships between these variables and surface temperature. It was found that the wave amplitude had a greater role in cooling than that of the frequency

    Similar works