Novel neural-network architecture for continuous gravitational waves

Abstract

The high computational cost of wide-parameter-space searches for continuous gravitational waves (CWs) significantly limits the achievable sensitivity. This challenge has motivated the exploration of alternative search methods, such as deep neural networks (DNNs). Previous attempts [1,2] to apply convolutional image-classification DNN architectures to all-sky and directed CW searches showed promise for short, one-day search durations, but proved ineffective for longer durations of around ten days. In this paper, we offer a hypothesis for this limitation and propose new design principles to overcome it. As a proof of concept, we show that our novel convolutional DNN architecture attains matched-filtering sensitivity for a targeted search (i.e., single sky-position and frequency) in Gaussian data from two detectors spanning ten days. We illustrate this performance for two different sky positions and five frequencies in the 20-1000 Hz range, spanning the spectrum from an "easy"to the "hardest"case. The corresponding sensitivity depths fall in the range of 82-86/ Hz. The same DNN architecture is trained for each case, taking between 4-32 hours to reach matched-filtering sensitivity. The detection probability of the trained DNNs as a function of signal amplitude varies consistently with that of matched filtering. Furthermore, the DNN statistic distributions can be approximately mapped to those of the F-statistic under a simple monotonic function

    Similar works