Towards Cache-Coherent Chiplet-Based Architectures with Wireless Interconnects

Abstract

Cache-coherent chiplet-based architectures have gained significant attention due to their potential for scalability and improved performance in modern computing systems. However, the interconnects in such architectures often pose challenges in maintaining cache coherence across chiplets, leading to increased latency and energy consumption. This thesis focuses on exploring the feasibility and advantages of integrating wireless interconnects into cache-coherent chiplet-based architectures. Through extensive simulations of 16 and 64 core systems segmented in 4 and 8 chiplet systems with multiple inter-chiplet latencies we debug and obtain traffic data. By studying the inter-chiplet traffic for different chiplet-based configurations and analyzing it in terms of spatial, temporal and time variance we derive that chiplet scaling degrades performance. Further we formulate the impact of hybrid wired and wireless interconnects and assess the potential performance benefits they offer. The findings from this research will contribute to the design and optimization of cache-coherent chiplet-based architectures, shedding light on the practicality and advantages of utilizing wireless interconnects in future computing systems

    Similar works