Domain formation and universally critical dynamics through phase separation in two-component Bose-Einstein condensates

Abstract

We explore the defect formation and universally critical dynamics in two-dimensional (2D) two-component Bose-Einstein condensates(BECs) subjected to two types of potential traps: a homogeneous trap and a harmonic trap.We focus on the non-equilibrium universal dynamics of the miscible-immiscible phase transition with both linear and nonlinear quenching types.Although there exists spatial independence of the critical point, we find that the inhomogeneity of trap doesn't affect the phase transition of system and the critical exponents can still be explained by the homogeneous Kibble-Zurek mechanism. By analyzing the Bogoliubov excitations, we establish a power-law relationship between the domain correlation length, the phase transition delay, and the quench time.Furthermore, through real-time simulations of phase transition dynamics, the formation of domain defects and the delay of phase transition in non-equilibrium dynamics are demonstrated, along with the corresponding universal scaling of correlation length and phase transition delay for various quench time and quench coefficients, which align well with our analytical predictions.Our study confirms that the universality class of two-component BECs remains unaffected by dimensionality, while the larger nonlinear coefficients effectively suppress non-adiabatic excitations, offering a novel perspective for addressing adiabatic evolution.Comment: 9 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions