Communication-Assisted Sensing in 6G Networks

Abstract

The exploration of coordination gain achieved through the synergy of sensing and communication (S&C) functions plays a vital role in improving the performance of integrated sensing and communication systems. This paper focuses on the optimal waveform design for communication-assisted sensing (CAS) systems within the context of 6G perceptive networks. In the CAS process, the base station actively senses the targets through device-free wireless sensing and simultaneously transmits the pertinent information to end-users. In our research, we establish a CAS framework grounded in the principles of rate-distortion theory and the source-channel separation theorem (SCT) in lossy data transmission. This framework provides a comprehensive understanding of the interplay between distortion, coding rate, and channel capacity. The purpose of waveform design is to minimize the sensing distortion at the user end while adhering to the SCT and power budget constraints. In the context of target response matrix estimation, we propose two distinct waveform strategies: the separated S&C and dual-functional waveform schemes. In the former strategy, we develop a simple one-dimensional search algorithm, shedding light on a notable power allocation tradeoff between the S&C waveform. In the latter scheme, we conceive a heuristic mutual information optimization algorithm for the general case, alongside a modified gradient projection algorithm tailored for the scenarios with independent sensing sub-channels. Additionally, we identify the presence of both subspace tradeoff and water-filling tradeoff. Finally, we validate the effectiveness of the proposed algorithms through numerical simulations

    Similar works

    Full text

    thumbnail-image

    Available Versions