High Rectification Ratio at Room Temperature in Rhenium(I) Compound

Abstract

Electrical current rectification is an interesting electronic feature, popularly known as a diode. Achieving a high rectification ratio in a molecular junction has been a long-standing goal in molecular electronics. The present work describes mimicking electrical current rectification with pi-stacked rhenium(I) compound sandwiched between two electrical contacts. Among the two mononuclear rhenium compounds studied here, [Re(CO)4(PPh3){(N)-saccharinate}] (1) and [Re(CO)3(phen){(N)-saccharinate}] (2), the latter show strong pi-pi interactions-induced high rectification ratio of ~ 4000 at 2.0 V at room temperature. Alternating current (AC)-based electrical measurements ensuring AC to DC electrical signal conversion at a frequency f of 1 KHz showing 2 can act as an excellent half-wave rectifier. Asymmetric charge injection barrier height at the electrode/Re(I) interfaces of the devices with a stacking configuration of p++-Si/Re compound31nm(2)/ITO originates the flow of electrical current unidirectionally. The charge transport mechanism governed by thermally activated hopping phenomena, and charge carrier propagation is explained through an energy profile considering the Fermi levels of two electrodes, and the energy of frontier molecular orbitals, HOMO, and LUMO, confirming rectification is of a molecular origin. The present work paves the way to combine different organometallic compounds as circuit elements in nanoelectronic devices to achieve numerous exciting electronic features.Comment: 16 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions