Role of crystal-field-splitting and longe-range-hoppings on superconducting pairing symmetry of La3_3Ni2_2O7_7

Abstract

We study the bilayer two-orbital model for superconducting pairing symmetry of La3_3Ni2_2O7_7 under pressure. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized Eliashberg equation with random-phase-approximation, we find that the superconducting pairing symmetry of La3_3Ni2_2O7_7 is robustly dxyd_{xy} if its DFT band structure is accurately reproduced in the downfolded model. We further show that fine-tuning of crystal-field-splitting between two Ni-ege_g orbitals qualitatively affects superconducting pairing symmetry of the bilayer two-orbital model, which changes from dxyd_{xy} to sΒ±s_{\pm} as the crystal-field-splitting exceeds a critical value. When the model only includes nearest-neighbor and second-nearest-neighbor hoppings, the crystal-field-splitting obtained by fitting to the DFT band structure is larger than the critical value and thus leads to sΒ±s_{\pm} superconducting pairing symmetry. When all nonzero long-range-hoppings are also included in the model, the fitted crystal-field-splitting is reduced and smaller than the critical value, which makes dxyd_{xy} superconducting pairing symmetry more favorable than sΒ±s_{\pm} symmetry. Our work demonstrates that in downfolded effective models, the details of band structure can play a crucial role in determining pairing symmetry in multi-orbital unconventional superconductors (such as La3_3Ni2_2O7_7).Comment: 11 pages and 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions