Isolation an agar degradation Bacillus sp. AT6 and preliminary application for seaweed saccharification

Abstract

Background: Agar is a common polysaccharide found in nature. However, agar is strongly resisted to the degradation processing, leading to limitation of its application in various areas. Thus, finding an effective solution for agar saccharification significantly improves the economically effects of agar based substrates.Methods: Soil samples were collected from TienPhong Forestry Ltd. Company, ThuyXuan District, ThuaThien Hue province, Vietnam. Potential agar degrading bacteria were screened on a mineral salt agar medium. The isolate was identified based on 16S rRNA nucleotide sequence, morphological, physiological, and biochemical characteristics. Agarase production was evaluated by modification culture conditions including incubation time, shaking speed, and initial inoculum size. Molecular mass of extracellular agarase was determined by native SDS-PAGE. The effect of pH, temperature, metal ions, and organic solvents were conducted for enzyme characterization. Application of enzyme was investigated on seaweed saccharification.Result: An agar degrading bacterial strain was isolated from soils and identified as Bacillus sp. AT6. Maximal agarase accumulation obtained in the culture containing an inoculum size of 10% (v/v), shaking speed of 210 rpm, and 96 hours incubation. The agarase revealed a single band on zymogram analysis with an apparent molecular weight of 180 kDa. The optimal temperature and pH were 40°C and pH 8.0, respectively. All tested metal ions and organic solvents partially decreased enzyme activity. Treatment seaweed by agarase resulted in reducing sugars release present in the reaction, indicating the saccharification of seaweed was succeeded.Conclusion: Bacillus sp. AT6 is a new report of agarolytic bacteria that produces extracellular agarase enzymes. The present results promise strain AT6 is a great candidate for agar saccharification for industrial application

    Similar works