Fibrotaxis{\it Fibrotaxis}: gradient-free, spontaneous and controllable droplet motion on soft solids

Abstract

Most passive droplet transport strategies rely on spatial variations of material properties to drive droplet motion, leading to gradient-based mechanisms with intrinsic length scales that limit the droplet velocity or the transport distance. Here, we propose droplet fibrotaxis{\it fibrotaxis}, a novel mechanism that leverages an anisotropic fiber-reinforced deformable solid to achieve spontaneous and gradient-free droplet transport. Using high-fidelity simulations, we identify the fluid wettability and the fiber orientation as critical parameters that enable controllable droplet velocity and long-range droplet transport. Our results highlight the potential of fibrotaxis as a droplet transport mechanism that can have a strong impact on self-cleaning surfaces, water harvesting and medical diagnostics.Comment: updated references and revised pape

    Similar works

    Full text

    thumbnail-image

    Available Versions