Solving Inverse Problems with Reinforcement Learning

Abstract

In this paper, we formally introduce, with rigorous derivations, the use of reinforcement learning to the field of inverse problems by designing an iterative algorithm, called REINFORCE-IP, for solving a general type of non-linear inverse problem. By choosing specific probability models for the action-selection rule, we connect our approach to the conventional regularization methods of Tikhonov regularization and iterative regularization. For the numerical implementation of our approach, we parameterize the solution-searching rule with the help of neural networks and iteratively improve the parameter using a reinforcement-learning algorithm~-- REINFORCE. Under standard assumptions we prove the almost sure convergence of the parameter to a locally optimal value. Our work provides two typical examples (non-linear integral equations and parameter-identification problems in partial differential equations) of how reinforcement learning can be applied in solving non-linear inverse problems. Our numerical experiments show that REINFORCE-IP is an efficient algorithm that can escape from local minimums and identify multi-solutions for inverse problems with non-uniqueness.Comment: 33 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions