Flame spread over thin hollow cylindrical fuels in microgravity

Abstract

This work presents experimental study on opposed flow flame spread over thin hollow cylindrical cellulosic fuel of diameters varying from 10 mm to 49 mm in microgravity environment. To understand the effect of flow and geometry on flame spread, experiments are conducted in low convective opposed flow conditions ranging from 10 cm/s to 30 cm/s for both hollow cylindrical and planar fuels at oxygen concentration of 21% and 1 atm pressure. In the microgravity environment the flame length and the flame spread rate are seen to increase with increase in hollow cylindrical fuel diameter over the flow range studied here. The flame spread rate exhibited a non-monotonic trend with flow speed, for flow of large diameter whereas a monotonic increasing trend is noted for small diameters. The flame spread rate over hollow cylindrical fuel is noted to be higher or at most equal compared to planar fuels over the matrix of experiments conducted in this study. A simplified analysis is carried out to arrive at an expression for flame spread rate over thin hollow cylindrical fuels. The analysis shows that the radiation heat transfer from the hot char to the inner surface of hollow virgin fuel dictates flame spread rate trend with fuel diameter of the hollow cylindrical fuels. Higher overall equivalence ratio in the inner section of the hollow fuels is responsible for higher char length in hollow fuels and also influence the flame spread rate for smaller fuel diameters.Comment: 40 pages, 14 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions