Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at s\sqrt{s} = 13 TeV

Abstract

A search for direct production of low-mass dimuon resonances is performed using s\sqrt{s} = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017-2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb1^{-1}. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1-2.6 GeV and 4.2-7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world's best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2\varepsilon^2 in the dark photon model above 106^{-6} are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH)\sin(\theta_\text{H}) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tanβ\tan\beta = 0.5

    Similar works

    Full text

    thumbnail-image

    Available Versions