PARAMETRIC DESIGN OF 3D PRINTED RIBBED SLAB SYSTEM BASED ON NATURE-INSPIRED PATTERNS

Abstract

The interest in pattern geometry and its application to architecture may be seen throughout history. While some authors were fascinated by pattern aesthetics, others were focused on their effectiveness and underlying principles of pattern formation. In continuing with the work of the second group of authors, this paper reviews opportunities for efficient ways of implementing patterns in the design of architectural elements, supported by recent developments in parametric design and digital fabrication techniques. This paper aims to analyze pattern configurations found in nature in order to determine the underlying generation principles and the potential of their application for 3D printed slab systems. Using case study methodology, selected patterns will be applied in developing a generative parametric design system, which will further be tested in creating and (small-scale) fabricating ribbed slab elements. The result of the research is the generalization of a design approach based on principles of natural pattern formation to produce sustainable design solutions that rely on the transposition of the inherent efficiency of natural systems, such as low energy or material consumption

    Similar works