A hypermedia application offers its users a lot of freedom to navigate through a large hyperspace. The rich link structure of the hypermedia application can not only cause users to get lost in the hyperspace, but can also lead to comprehension problems because different users may be interested in different pieces of information or a different level of detail or difficulty. Adaptive hypermedia systems (or AHS for short) aim at overcoming these problems by providing adaptive navigation support and adaptive content. The adaptation is based on a user model that represents relevant aspects about the user. At the Eindhoven University of Technology we developed anAHS, named AHA {DC981. To describe its functionality and that of future adaptive systems we also developed a reference model for the architecture of adaptive hypermedia applications, named AHAM (for Adaptive Hypermedia Application Model) {DHW991. In AHAM knowledge is represented through hierarchies of large composite abstract concepts as well as small atomic ones. AHAM also divides the different aspects of an AHS into a domain model (DM). a user model (UM) and an adaptation model (AM). This division provides a clear separation of concerns when developing an adaptive hypermedia application. In this paper, we concentrate on the user modeling aspects of AHAM, but also describe how they relate to the domain model and the adaptation model. Also. we provide a separation between the adaptation rules an author or system designer writes (as part of the adaptation model) and the system's task of executing these rules in the right order. This distinction leads to a simplification of the author's or system designer's task to write adaptation rules. We illustrate authoring and adaptation in by some examples in the AHS AHA