The problem of spurious programs is a longstanding challenge when training a
semantic parser from weak supervision. To eliminate such programs that have
wrong semantics but correct denotation, existing methods focus on exploiting
similarities between examples based on domain-specific knowledge. In this
paper, we propose a domain-agnostic filtering mechanism based on program
execution results. Specifically, for each program obtained through the search
process, we first construct a representation that captures the program's
semantics as execution results under various inputs. Then, we run a majority
vote on these representations to identify and filter out programs with
significantly different semantics from the other programs. In particular, our
method is orthogonal to the program search process so that it can easily
augment any of the existing weakly supervised semantic parsing frameworks.
Empirical evaluations on the Natural Language Visual Reasoning and
WikiTableQuestions demonstrate that applying our method to the existing
semantic parsers induces significantly improved performances.Comment: EMNLP 202