Unraveling Diffusion in Fusion Plasma: A Case Study of In Situ Processing and Particle Sorting

Abstract

This work starts an in situ processing capability to study a certain diffusion process in magnetic confinement fusion. This diffusion process involves plasma particles that are likely to escape confinement. Such particles carry a significant amount of energy from the burning plasma inside the tokamak to the diverter and damaging the diverter plate. This study requires in situ processing because of the fast changing nature of the particle diffusion process. However, the in situ processing approach is challenging because the amount of data to be retained for the diffusion calculations increases over time, unlike in other in situ processing cases where the amount of data to be processed is constant over time. Here we report our preliminary efforts to control the memory usage while ensuring the necessary analysis tasks are completed in a timely manner. Compared with an earlier naive attempt to directly computing the same diffusion displacements in the simulation code, this in situ version reduces the memory usage from particle information by nearly 60% and computation time by about 20%

    Similar works

    Full text

    thumbnail-image

    Available Versions