Abstract

Trabajo presentado en el 4th European Biosensor Symposium, celebrado en Aquisgrán (Alemania), del 27 al 30 de agosto de 2023Introduction. The worldwide incidence and death toll of colorectal and pancreatic cancers (CRC and PDAC) have increased considerably since 1990. For this reason, both early detection and regular follow-up are considered key factors in improving patient prognosis. In this sense, the determination of the total content of specific proteins and their aberrantly glycosylated fraction in oncologic processes could help to achieve the proposed goals. Results and Discussion. In this work, two simple but highly competitive electrochemical immunoplatforms for the determination of total and glycosylated post-translational modified haptoglobin (Hp) [1], and CA19-9 [2] (candidate biomarkers associated with colorectal and pancreatic cancer, respectively) are presented. As seen in Figure 1, these biotools are uplifted in the use of magnetic immunocaptors and another antibody or a lectin as detector elements lastly labeled with HRP, which enables subsequent amperometric detection. The presented bioplatforms exhibit attractive characteristics in terms of simplicity, affordability, and point-of-care application compared to the conventional available methodologies, highlighting low detection limits (0.07 and 0.46 ng mL¿1 for total and glycosylated Hp, respectively, and 1.5 U mL¿1 for CA19-9), and short assay times (< 2 h). The workability of these quantitative bioplatforms for the analysis of secretomes from cultured CRC cells with the distinct potential to metastasize (Hp) or serum samples from healthy and PDAC-diagnosed subjects (CA19-9) was assessed to definitely confirm full exploitation of all the above exposed enticing attributes. Conclusions. Our findings clearly revealed the unquestionable ability of these modern electrochemical immunoplatforms to discriminate between healthy and cancer-diagnosed subjects, as well as to assess disease progression, positioning these simple but effective methodologies as advanced electroanalytical tools with proven real biomedical applications, and the hope of aiding in the accurate diagnosis of prevalent and high mortality cancers

    Similar works