An innovative optimization approach for energy management of a microgrid system

Abstract

The local association of electrical generator including renewable energies and storage technologies approximately installed to the client made way for a small-scale power grid called a microgrid. In certain cases, the random nature of renewable energy sources, combined with the variable pattern of demand, results in issues concerning the sustainability and reliability of the microgrid system. Furthermore, the cost of the energy coming from conventional sources is considering as matter to the private consumer due to its high fees. An improved methodology combining the simplex-based linear programming with the particle swarm optimisation approach is employed to implement an integrated power management system. The energy scheduling is done by assuming the consumption profile of a smart city. two scenarios of energy management have been suggested to illustrate the behaviour of cost and gas emissions for an optimised energy management. The results showed the reliability of the energy management system using an improvemed approach in scheduling of the energy flows for the microgrid producers, limiting the utility’s cost versus an experiment that had already been done for a similar system using the identical data. The outcome of the computation identified the ideal set points of the power generators in a smart city supplied by a microgrid, while guaranteeing the comfort of the customers i.e without intermetency in the supply, also, reducing the emissions of greenhouse gases and providing an optimal exploitation cost for all smart city users. Morover, the proposed energy management system gave an inverse relation between economic and environmental aspects, in fact, a multi-objective optimization approach is performed as a continuation of the work proposed in this paperinfo:eu-repo/semantics/publishedVersio

    Similar works