Maintaining the Integrity Over Wear Time of a Hydrocolloid-based Ostomy Adhesive Whilst Maintaining Skin Barrier Function

Abstract

In this extensive body of work, a thorough exploration delves into hydrocolloid based adhesives, with a focus on addressing challenges faced by stoma patients, particularly the susceptibility of ostomy adhesives to breakdown upon exposure to liquids. Stoma patients, compelled to wear pouching systems continuously, encounter issues like the compromise of skin barrier integrity, leading to medical adhesive-related skin injuries. The primary objective of this thesis is to reinforce the structural integrity of ostomy adhesives while preserving the skin barrier during pouching system use, an aspect often overlooked in current literature due to the hydrophilic nature of hydrocolloid based adhesives. The study introduces novel aims, examining the potential link between handedness and the preferred direction of adhesive removal, and its impact on peristomal skin complications as well as a novel skin capacitive imagery stitching technique. Another goal involves developing hierarchical structures on adhesive surfaces to enhance integrity, initial tack, and minimize skin contact for optimal skin health. The introduction provides a detailed breakdown of hydrocolloid-based ostomy adhesives, stoma anatomy, and the purpose of pouching systems. A comprehensive literature review, utilizing the PICO approach, encompasses stoma anatomy, physiology, indications for stoma surgery, and methods for assessing skin health. The review explores various methodologies to improve the durability of hydrocolloid-based adhesives, incorporating hydrodynamics, crosslinking, and layering systems. The potential influence of handedness on adhesive removal techniques is examined, considering its impact on peristomal skin complications. Results reveal the consistent performance of Welland Medical Ltd.'s hydrocolloid based adhesive but highlight the need for improved integrity over wear time. Strategies include modifying sodium-carboxymethylcellulose degree of substitution and increasing pectin degree of esterification, resulting in enhanced fluid handling capabilities and reduced susceptibility to degradation. Residual testing indicates that residual particles on the skin can impair the barrier function, remedied by a silicone-based adhesive remover. Surveys show that a patient's dominant hand and following the skin's natural langer lines during adhesive removal may minimize skin trauma. The results also show that structured surface profiles on hydrocolloid-based adhesive surfaces impact the skin's functional barrier recovery time. The research goal of this project and its objectives have been reached, the approaches have been explained clearly and implementations have been assessed using experimental findings. This project's findings contribute to advancements in ostomy care by enhancing adhesive performance, understanding patient behaviour, and improving the overall user experience. It also facilitates the efficient detachment of the adhesive from the skin surface

    Similar works