A real time sliding mode control for a wave energy converter based on a wells turbine

Abstract

Due to the nonlinear dynamics and uncertainties usually present in wave energy conversion systems, the efficiency of these devices can be enhanced employing a robust control algorithms. Wave energy converters are constructed using electric generators of variable velocity, like double feed induction generator (DFIG) since they may improve the system efficiency to generate power when compared to fixed speed generators. The main reason is that this generators with variable speed may adapt the speed of the turbine in order to maintain the optimal flow coefficient values which improves the efficiency of the Wells turbine. However, a suitable speed controller is required in these systems first in order to avoid the stalling phenomenon and second in order to track the optimal turbine reference velocity that optimizes the power generation. In this paper a real time sliding mode control scheme for wave energy conversion systems that incorporate a Wells turbine and a DFIG is proposed. The Lyapunov stability theory is used to analyse the stability of this control scheme under parameter uncertainties and system disturbances. Next, the proposed control scheme is validated first by means of some simulation examples using the Matlab/Simulink software and second using a real-time experimental platform based on a dSPACE DS1103 control board.The authors are very grateful to the UPV/EHU by its support through the projects PPGA18/04 and UFI11/07 and to the Basque Government by its support through the project ELKARTEK KK-2017/00033. The authors also would like to thank the anonymous reviewers who have helped to improve the initial version of this paper

    Similar works