Novel Computational Methods for State Space Filtering

Abstract

The state-space formulation for time-dependent models has been long used invarious applications in science and engineering. While the classical Kalman filter(KF) provides optimal posterior estimation under linear Gaussian models, filteringin nonlinear and non-Gaussian environments remains challenging.Based on the Monte Carlo approximation, the classical particle filter (PF) can providemore precise estimation under nonlinear non-Gaussian models. However, it suffers fromparticle degeneracy. Drawing from optimal transport theory, the stochastic map filter(SMF) accommodates a solution to this problem, but its performance is influenced bythe limited flexibility of nonlinear map parameterisation. To account for these issues,a hybrid particle-stochastic map filter (PSMF) is first proposed in this thesis, wherethe two parts of the split likelihood are assimilated by the PF and SMF, respectively.Systematic resampling and smoothing are employed to alleviate the particle degeneracycaused by the PF. Furthermore, two PSMF variants based on the linear and nonlinearmaps (PSMF-L and PSMF-NL) are proposed, and their filtering performance is comparedwith various benchmark filters under different nonlinear non-Gaussian models.Although achieving accurate filtering results, the particle-based filters require expensive computations because of the large number of samples involved. Instead, robustKalman filters (RKFs) provide efficient solutions for the linear models with heavy-tailednoise, by adopting the recursive estimation framework of the KF. To exploit the stochasticcharacteristics of the noise, the use of heavy-tailed distributions which can fit variouspractical noises constitutes a viable solution. Hence, this thesis also introduces a novelRKF framework, RKF-SGαS, where the signal noise is assumed to be Gaussian and theheavy-tailed measurement noise is modelled by the sub-Gaussian α-stable (SGαS) distribution. The corresponding joint posterior distribution of the state vector and auxiliaryrandom variables is estimated by the variational Bayesian (VB) approach. Four differentminimum mean square error (MMSE) estimators of the scale function are presented.Besides, the RKF-SGαS is compared with the state-of-the-art RKFs under three kinds ofheavy-tailed measurement noises, and the simulation results demonstrate its estimationaccuracy and efficiency.One notable limitation of the proposed RKF-SGαS is its reliance on precise modelparameters, and substantial model errors can potentially impede its filtering performance. Therefore, this thesis also introduces a data-driven RKF method, referred to asRKFnet, which combines the conventional RKF framework with a deep learning technique. An unsupervised scheduled sampling technique (USS) is proposed to improve theistability of the training process. Furthermore, the advantages of the proposed RKFnetare quantified with respect to various traditional RKFs

    Similar works