A neural network approach for chatter prediction in turning

Abstract

[EN] Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and reduced cost in these processes is chatter, or unstable spindle speed-chip width combinations that exhibit self-excited vibration. In this paper, an artificial neural network (ANN) is applied to model turning stability. The analytical stability limit is used to generate a data set that trains the ANN. It is observed that the number and distribution of training points influences the ability of the ANN model to capture the smaller, more closely spaced lobes that occur at lower spindle speeds. Overall, the ANN is successful (>90% accuracy) at predicting the stability behavior after appropriate training.The authors gratefully acknowledge financial support from the UNC ROI program. Elena Perez-Bernabeu and Miguel Selles also acknowledge support from Universitat Politenica de Valencia (PAID-00-17). Additionally, some of the neural net figures and the 10-fold cross validation figures are based on the TikZ codes provided on StackExchange-TeX by various users. Harish Cherukuri would like to thank them for their valuable advice.Cherukuri, H.; Pérez Bernabeu, E.; Sellés, M.; Schmitz, TL. (2019). A neural network approach for chatter prediction in turning. Procedia Manufacturing. 34:885-892. https://doi.org/10.1016/j.promfg.2019.06.1598858923

    Similar works

    Full text

    thumbnail-image

    Available Versions