Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography

Abstract

Objective  To perform in vivo analysis of retinal functional and structural parameters in healthy mouse eyes. Animal Studied  Adult C57BL/6 male mice (n = 37). Procedures  Retinal function was evaluated using pattern electroretinography (pERG) and the chromatic pupil light reflex (cPLR). Structural properties of the retina and nerve fiber layer (NFL) were evaluated using spectral-domain optical coherence tomography (SD-OCT). Results  The average pERG amplitudes were found to be 11.2 ± 0.7 μV (P50-N95, mean ± SEM), with an implicit time for P50-N95 interval of 90.4 ± 5.4 ms. Total retinal thickness was 229.5 ± 1.7 μm (mean ± SEM) in the area centralis region. The thickness of the retinal nerve fiber layer (mean ± SEM) using a circular peripapillary retinal scan centered on the optic nerve was 46.7 ± 0.9 μm (temporal), 46.1 ± 0.9 μm (superior), 45.8 ± 0.9 μm (nasal), and 48.4 ± 1 μm (inferior). The baseline pupil diameter was 2.1 ± 0.05 mm in darkness, and 1.1 ± 0.05 and 0.56 ± 0.03 mm after stimulation with red (630 nm, luminance 200 kcd/m2) or blue (480 nm, luminance 200 kcd/m2) light illumination, respectively. Conclusions  Pattern electroretinography, cPLR and SD-OCT analysis are reproducible techniques, which can provide important information about retinal and optic nerve function and structure in mice.This article is from Veterinary Ophthalmology 15 (2012): 94, doi: 10.1111/j.1463-5224.2012.01034.x.</p

    Similar works