Enhancing Spectrum Sensing via Reconfigurable Intelligent Surfaces: Passive or Active Sensing and How Many Reflecting Elements are Needed?

Abstract

Cognitive radio has been proposed to alleviate the scarcity of available spectrum caused by the significant demand for wideband services and the fragmentation of spectrum resources. However, sensing performance is quite poor due to the low sensing signal-to-noise ratio, especially in complex environments with severe channel fading. Fortunately, reconfigurable intelligent surface (RIS)-aided spectrum sensing can effectively tackle the above challenge due to its high array gain. Nevertheless, the traditional passive RIS may suffer from the ``double fading'' effect, which severely limits the performance of passive RIS-aided spectrum sensing. Thus, a crucial challenge is how to fully exploit the potential advantages of the RIS and further improve the sensing performance. To this end, we introduce the active RIS into spectrum sensing and respectively formulate two optimization problems for the passive RIS and the active RIS to maximize the detection probability. In light of the intractability of the formulated problems, we develop a one-stage optimization algorithm with inner approximation and a two-stage optimization algorithm with a bisection method to obtain sub-optimal solutions, and apply the Rayleigh quotient to obtain the upper and lower bounds of the detection probability. Furthermore, in order to gain more insight into the impact of the RIS on spectrum sensing, we respectively investigate the number configuration for passive RIS and active RIS and analyze how many reflecting elements are needed to achieve the detection probability close to 1. Simulation results verify that the proposed algorithms outperform existing algorithms under the same parameter configuration, and achieve a detection probability close to 1 with even fewer reflecting elements or antennas than existing schemes

    Similar works

    Full text

    thumbnail-image

    Available Versions