Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries

Abstract

We study parallel fault-tolerant quantum computing for families of homological quantum low-density parity-check (LDPC) codes defined on 3-manifolds with constant or almost-constant encoding rate. We derive generic formula for a transversal TT gate of color codes on general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-XX membranes having a Z2\mathbb{Z}_2 triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integral of the emergent higher symmetry operator in a topological quantum field theory: the Z23\mathbb{Z}_2^3 gauge theory. Moreover, the transversal SS gate of the color code corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and parallelizable logical CZ gates. We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds and also study the scaling of the Betti number and systoles with volume for various 3-manifolds, which translates to the encoding rate and distance. We further develop three types of LDPC codes supporting such logical gates: (1) A quasi-hyperbolic code from the product of 2D hyperbolic surface and a circle, with almost-constant rate k/n=O(1/log(n))k/n=O(1/\log(n)) and O(log(n))O(\log(n)) distance; (2) A homological fibre bundle code with O(1/log12(n))O(1/\log^{\frac{1}{2}}(n)) rate and O(log12(n))O(\log^{\frac{1}{2}}(n)) distance; (3) A specific family of 3D hyperbolic codes: the Torelli mapping torus code, constructed from mapping tori of a pseudo-Anosov element in the Torelli subgroup, which has constant rate while the distance scaling is currently unknown. We then show a generic constant-overhead scheme for applying a parallelizable universal gate set with the aid of logical-XX measurements.Comment: 40 pages, 31 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions