Despite the great success of neural visual generative models in recent years,
integrating them with strong symbolic knowledge reasoning systems remains a
challenging task. The main challenges are two-fold: one is symbol assignment,
i.e. bonding latent factors of neural visual generators with meaningful symbols
from knowledge reasoning systems. Another is rule learning, i.e. learning new
rules, which govern the generative process of the data, to augment the
knowledge reasoning systems. To deal with these symbol grounding problems, we
propose a neural-symbolic learning approach, Abductive Visual Generation
(AbdGen), for integrating logic programming systems with neural visual
generative models based on the abductive learning framework. To achieve
reliable and efficient symbol assignment, the quantized abduction method is
introduced for generating abduction proposals by the nearest-neighbor lookups
within semantic codebooks. To achieve precise rule learning, the contrastive
meta-abduction method is proposed to eliminate wrong rules with positive cases
and avoid less-informative rules with negative cases simultaneously.
Experimental results on various benchmark datasets show that compared to the
baselines, AbdGen requires significantly fewer instance-level labeling
information for symbol assignment. Furthermore, our approach can effectively
learn underlying logical generative rules from data, which is out of the
capability of existing approaches