Minimization Problems in Signalized Road Networks

Abstract

In this study, we present a bilevel programming model in which upper level is defined as a biobjective problem and the lower level is considered as a stochastic user equilibrium assignment problem. It is clear that the biobjective problem has two objectives: the first maximizes the reserve capacity whereas the second minimizes performance index of a road network. We use a weighted-sum method to determine the Pareto optimal solutions of the biobjective problem by applying normalization approach for making the objective functions dimensionless. Following, a differential evolution based heuristic solution algorithm is introduced to overcome the problem presented by use of biobjective bilevel programming model. The first numerical test is conducted on two-junction network in order to represent the effect of the weighting on the solution of combined reserve capacity maximization and delay minimization problem. Allsop & Charlesworth's network, which is a widely preferred road network in the literature, is selected for the second numerical application in order to present the applicability of the proposed model on a medium-sized signalized road network. Results support authorities who should usually make a choice between two conflicting issues, namely, reserve capacity maximization and delay minimization. C1 [Baskan, Ozgur; Ceylan, Huseyin] Pamukkale Univ, Dept Civil Engn, Fac Engn, TR-20160 Denizli, Turkey. [Ozan, Cenk] Adnan Menderes Univ, Dept Civil Engn, Fac Engn, TR-09100 Aydin, Turkey. Document type: Articl

    Similar works