Form, function, mind: what doesn't compute (and what might)

Abstract

The applicability of computational and dynamical systems models to organisms is scrutinized, using examples from developmental biology and cognition. Developmental morphogenesis is dependent on the inherent material properties of developing tissues, a non-computational modality, but cell differentiation, which utilizes chromatin-based revisable memory banks and program-like function-calling, via the developmental gene co-expression system unique to metazoans, has a quasi-computational basis. Multi-attractor dynamical models are argued to be misapplied to global properties of development, and it is suggested that along with computationalism, dynamicism is similarly unsuitable to accounting for cognitive phenomena. Proposals are made for treating brains and other nervous tissues as novel forms of excitable matter with inherent properties which enable the intensification of cell-based basal cognition capabilities present throughout the tree of life

    Similar works

    Full text

    thumbnail-image

    Available Versions