Abstract

We present ALMA observations of the Class I source Oph IRS63 in the context of the Early Planet Formation in Embedded Disks (eDisk) large program. Our ALMA observations of Oph IRS63 show a myriad of protostellar features, such as a shell-like bipolar outflow (in 12^{12}CO), an extended rotating envelope structure (in 13^{13}CO), a streamer connecting the envelope to the disk (in C18^{18}O), and several small-scale spiral structures seen towards the edge of the dust continuum (in SO). By analyzing the velocity pattern of 13^{13}CO and C18^{18}O, we measure a protostellar mass of M=0.5±0.2\rm M_\star = 0.5 \pm 0.2 ~M\rm M_\odot and confirm the presence of a disk rotating at almost Keplerian velocity that extends up to 260\sim260 au. These calculations also show that the gaseous disk is about four times larger than the dust disk, which could indicate dust evolution and radial drift. Furthermore, we model the C18^{18}O streamer and SO spiral structures as features originating from an infalling rotating structure that continuously feeds the young protostellar disk. We compute an envelope-to-disk mass infall rate of 106\sim 10^{-6}~Myr1\rm M_\odot \, yr^{-1} and compare it to the disk-to-star mass accretion rate of 108\sim 10^{-8}~Myr1\rm M_\odot \, yr^{-1}, from which we infer that the protostellar disk is in a mass build-up phase. At the current mass infall rate, we speculate that soon the disk will become too massive to be gravitationally stable.Comment: 26 pages and 17 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions