Fast Marching based Rendezvous Path Planning for a Team of Heterogeneous Vehicle

Abstract

A formulation is developed for deterministically calculating the optimized paths for a multi-agent system consisting of heterogeneous vehicles. The essence of this formulation is the calculation of the shortest time for each agent to reach every grid point from its known initial position. Such arrival time map can be readily assessed using the Fast Marching Method (FMM), a computational algorithm originally designed for solving boundary value problems of the Eikonal equation. Leveraging the FMM method, we demonstrate that the minimal time rendezvous point and paths for all member vehicles can be uniquely determined with minimal computational concerns. To showcase the potential of our method, we use an example of a virtual rendezvous scenario that entails the coordination of a ship, an underwater vehicle, an aerial vehicle, and a ground vehicle to converge at the optimal location within the Tampa Bay area in minimal time. It illustrates the value of the developed framework in efficiently constructing continuous path planning, while accommodating different operational constraints of heterogeneous member vehicles

    Similar works

    Full text

    thumbnail-image

    Available Versions