Do We Really Need Contrastive Learning for Graph Representation?

Abstract

In recent years, contrastive learning has emerged as a dominant self-supervised paradigm, attracting numerous research interests in the field of graph learning. Graph contrastive learning (GCL) aims to embed augmented anchor samples close to each other while pushing the embeddings of other samples (negative samples) apart. However, existing GCL methods require large and diverse negative samples to ensure the quality of embeddings, and recent studies typically leverage samples excluding the anchor and positive samples as negative samples, potentially introducing false negative samples (negatives that share the same class as the anchor). Additionally, this practice can result in heavy computational burden and high time complexity of O(N2)O(N^2), which is particularly unaffordable for large graphs. To address these deficiencies, we leverage rank learning and propose a simple yet effective model, GraphRank. Specifically, we first generate two graph views through corruption. Then, we compute the similarity of pairwise nodes (anchor node and positive node) in both views, an arbitrary node in the latter view is selected as a negative node, and its similarity with the anchor node is computed. Based on this, we introduce rank-based learning to measure similarity scores which successfully relieve the false negative provlem and decreases the time complexity from O(N2)O(N^2) to O(N)O(N). Moreover, we conducted extensive experiments across multiple graph tasks, demonstrating that GraphRank performs favorably against other cutting-edge GCL methods in various tasks

    Similar works

    Full text

    thumbnail-image

    Available Versions