Dissipation induced extended-localized transition

Abstract

Mobility edge (ME), representing the critical energy that distinguishes between extended and localized states, is a key concept in understanding the transition between extended (metallic) and localized (insulating) states in disordered and quasiperiodic systems. Here we explore the impact of dissipation on a quasiperiodic system featuring MEs by calculating steady-state density matrix and analyzing quench dynamics with sudden introduction of dissipation, and demonstrate that dissipation can lead the system into specific states predominantly characterized by either extended or localized states, irrespective of the initial state. Our results establish the use of dissipation as a new avenue for inducing transitions between extended and localized states, and for manipulating dynamic behaviors of particles

    Similar works

    Full text

    thumbnail-image

    Available Versions