Electrochemical Coupling of Biomass‐Derived Acids: New C8 Platforms for Renewable Polymers and Fuels

Abstract

Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability

    Similar works