Irreversible evolution of dislocation pile-ups during cyclic microcantilever bending

Abstract

In metals geometrically necessary dislocations (GNDs) are generated primarily to accommodate strain gradients and they play a key role in the Bauschinger effect, strain hardening, micron-scale size effects and fatigue. During bending large strain gradients naturally emerge which makes this deformation mode exceptionally suitable to study the evolution of GNDs. Here we present bi-directional bending experiment of a Cu single crystalline microcantilever with in situ characterisation of the dislocation microstructure in terms of high-resolution electron backscatter diffraction (HR-EBSD). The experiments are complemented with dislocation density modelling to provide physical understanding of the collective dislocation phenomena. We find that dislocation pileups form around the neutral zone during initial bending, however, these do not dissolve upon reversed loading, rather they contribute to the development of a much more complex GND dominated microstructure. This irreversible process is analysed in detail in terms of the involved Burgers vectors and slip systems to provide an in-depth explanation of the Bauschinger-effect and strain hardening at this scale. We conclude that the most dominant role in this behaviour is played by short-range dislocation interactions

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2023