Lattice Boltzmann Methods for Partial Differential Equations

Abstract

Lattice Boltzmann methods provide a robust and highly scalable numerical technique in modern computational fluid dynamics. Besides the discretization procedure, the relaxation principles form the basis of any lattice Boltzmann scheme and render the method a bottom-up approach, which obstructs its development for approximating broad classes of partial differential equations. This work introduces a novel coherent mathematical path to jointly approach the topics of constructability, stability, and limit consistency for lattice Boltzmann methods. A new constructive ansatz for lattice Boltzmann equations is introduced, which highlights the concept of relaxation in a top-down procedure starting at the targeted partial differential equation. Modular convergence proofs are used at each step to identify the key ingredients of relaxation frequencies, equilibria, and moment bases in the ansatz, which determine linear and nonlinear stability as well as consistency orders of relaxation and space-time discretization. For the latter, conventional techniques are employed and extended to determine the impact of the kinetic limit at the very foundation of lattice Boltzmann methods. To computationally analyze nonlinear stability, extensive numerical tests are enabled by combining the intrinsic parallelizability of lattice Boltzmann methods with the platform-agnostic and scalable open-source framework OpenLB. Through upscaling the number and quality of computations, large variations in the parameter spaces of classical benchmark problems are considered for the exploratory indication of methodological insights. Finally, the introduced mathematical and computational techniques are applied for the proposal and analysis of new lattice Boltzmann methods. Based on stabilized relaxation, limit consistent discretizations, and consistent temporal filters, novel numerical schemes are developed for approximating initial value problems and initial boundary value problems as well as coupled systems thereof. In particular, lattice Boltzmann methods are proposed and analyzed for temporal large eddy simulation, for simulating homogenized nonstationary fluid flow through porous media, for binary fluid flow simulations with higher order free energy models, and for the combination with Monte Carlo sampling to approximate statistical solutions of the incompressible Euler equations in three dimensions

    Similar works