Characterization of porous membranes using artificial neural networks

Abstract

Porous membranes have been utilized intensively in a wide range of fields due to their special characteristics and a rigorous characterization of their microstructures is crucial for understanding their properties and improving the performance for target applications. A promising method for the quantitative analysis of porous structures leverages the physics-based generation of porous structures at the pore scale, which can be validated against real experimental microstructures, followed by building the process–structure–property relationships with data-driven algorithms such as artificial neural networks. In this study, a Variational AutoEncoder (VAE) neural network model is used to characterize the 3D structural information of porous materials and to represent them with low-dimensional latent variables, which further model the structure–property relationship and solve the inverse problem of process–structure linkage combined with the Bayesian optimization method. Our methods provide a quantitative way to learn structural descriptors in an unsupervised manner which can characterize porous microstructures robustly

    Similar works