research

Risk Assessment and Scaling for the SLS LH2 ET

Abstract

In this report the main physics processes in LH2 tank during prepress and rocket flight are studied. The goal of this investigation is to analyze possible hazards and to make risk assessment in proposed LH2 tank designs for SLS with 5 engines (the situation with 4 engines is less critical). For analysis we use the multinode model (MNM) developed by us and presented in a separate report and also 3D ANSYS simulations. We carry out simulation and theoretical analysis the physics processes such as (i) accumulation of bubbles in LH2 during replenish stage and their collapsing in the liquid during the prepress; (ii) condensation-evaporation at the liquid-vapor interface and tank wall, (iv) heating the liquid near the interface and wall due to condensation and environment heat, (v) injection of hot He during prepress and of hot GH2 during flight, (vi) mixing and cooling of the injected gases due to heat transfer between the gases, liquid and the tank wall. We analyze the effects of these physical processes on the thermo- and fluid gas dynamics in the ullage and on the stratification of temperature in the liquid and assess the associated hazards. A special emphasize is put on the scaling predictions for the larger SLS LH2 tank

    Similar works