research

Space-based Observational Constraints for 1-D Plume Rise Models

Abstract

We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the BL, consistent with earlier results. We propose two simplified parameterizations for computing injection heights for fires in CTMs and discuss current challenges to representing plume injection heights in large scale atmospheric models

    Similar works