research

Remote and In Situ Observations of an Unusual Earth-Directed Coronal Mass Ejection from Multiple Viewpoints

Abstract

During June 16-21, 2010, an Earth-directed Coronal Mass Ejection (CME) event was observed by instruments onboard STEREO, SOHO, MESSENGER and Wind. This event was the first direct detection of a rotating CME in the middle and outer corona. Here, we carry out a comprehensive analysis of the evolution of the CME in the interplanetary medium comparing in-situ and remote observations, with analytical models and three-dimensional reconstructions. In particular, we investigate the parallel and perpendicular cross section expansion of the CME from the corona through the heliosphere up to 1 AU. We use height-time measurements and the Gradual Cylindrical Shell (GCS) technique to model the imaging observations, remove the projection effects, and derive the 3-dimensional extent of the event. Then, we compare the results with in-situ analytical Magnetic Cloud (MC) models, and with geometrical predictions from past works. We nd that the parallel (along the propagation plane) cross section expansion agrees well with the in-situ model and with the Bothmer & Schwenn [1998] empirical relationship based on in-situ observations between 0.3 and 1 AU. Our results effectively extend this empirical relationship to about 5 solar radii. The expansion of the perpendicular diameter agrees very well with the in-situ results at MESSENGER ( 0:5 AU) but not at 1 AU. We also find a slightly different, from Bothmer & Schwenn [1998], empirical relationship for the perpendicular expansion. More importantly, we find no evidence that the CME undergoes a significant latitudinal over-expansion as it is commonly assume

    Similar works