research

A Proposed Strategy for the U.S. to Develop and Maintain a Mainstream Capability Suite ("Warehouse") for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond

Abstract

The ability of space assets to rendezvous and dock/capture/berth is a fundamental enabler for numerous classes of NASA fs missions, and is therefore an essential capability for the future of NASA. Mission classes include: ISS crew rotation, crewed exploration beyond low-Earth-orbit (LEO), on-orbit assembly, ISS cargo supply, crewed satellite servicing, robotic satellite servicing / debris mitigation, robotic sample return, and robotic small body (e.g. near-Earth object, NEO) proximity operations. For a variety of reasons to be described, NASA programs requiring Automated/Autonomous Rendezvous and Docking/Capture/Berthing (AR&D) capabilities are currently spending an order-of-magnitude more than necessary and taking twice as long as necessary to achieve their AR&D capability, "reinventing the wheel" for each program, and have fallen behind all of our foreign counterparts in AR&D technology (especially autonomy) in the process. To ensure future missions' reliability and crew safety (when applicable), to achieve the noted cost and schedule savings by eliminate costs of continually "reinventing the wheel ", the NASA AR&D Community of Practice (CoP) recommends NASA develop an AR&D Warehouse, detailed herein, which does not exist today. The term "warehouse" is used herein to refer to a toolbox or capability suite that has pre-integrated selectable supply-chain hardware and reusable software components that are considered ready-to-fly, low-risk, reliable, versatile, scalable, cost-effective, architecture and destination independent, that can be confidently utilized operationally on human spaceflight and robotic vehicles over a variety of mission classes and design reference missions, especially beyond LEO. The CoP also believes that it is imperative that NASA coordinate and integrate all current and proposed technology development activities into a cohesive cross-Agency strategy to produce and utilize this AR&D warehouse. An initial estimate indicates that if NASA strategically coordinates the development of a robust AR&D capability across the Agency, the cost of implementing AR&D on a spacecraft could be reduced from roughly 70Mpermissiontoaslowas70M per mission to as low as 7M per mission, and the associated development time could be reduced from 4 years to 2 years, after the warehouse is completely developed. Table 1 shows the clear long-term benefits to the Agency in term of costs and schedules for various missions. (The methods used to arrive at the Table 1 numbers is presented in Appendices A and B.

    Similar works